Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280387

RESUMO

BackgroundGuidelines for SARS-CoV-2 have relied on limited data on duration of viral infectiousness and correlation with COVID-19 symptoms and diagnostic testing. MethodsWe enrolled ambulatory adults with acute SARS-CoV-2 infection and performed serial measurements of COVID-19 symptoms, nasal swab viral RNA, nucleocapsid (N) and spike (S) antigens, and replication-competent SARS-CoV-2 by culture. We determined average time from symptom onset to a first negative test result and estimated risk of infectiousness, as defined by a positive viral culture. ResultsAmong 95 adults, median [interquartile range] time from symptom onset to first negative test result was 9 [5] days, 13 [6] days, 11 [4] days, and >19 days for S antigen, N antigen, viral culture growth, and viral RNA by RT-PCR, respectively. Beyond two weeks, viral cultures and N antigen titers were rarely positive, while viral RNA remained detectable among half (26/51) of participants tested 21-30 days after symptom onset. Between 6-10 days from symptom onset, N antigen was strongly associated with viral culture positivity (relative risk=7.61, 95% CI: 3.01-19.2), whereas neither viral RNA nor symptoms were associated with culture positivity. During the 14 days following symptom onset, presence of N antigen (adjusted relative risk=7.66, 95% CI: 3.96-14.82), remained strongly associated with viral culture positivity, regardless of COVID-19 symptoms. ConclusionsMost adults have replication-competent SARS-CoV-2 for 10-14 after symptom onset, and N antigen testing is a strong predictor of viral infectiousness. Within two weeks from symptom onset, N antigen testing, rather than absence of symptoms or viral RNA, should be used to safely discontinue isolation. FundingBill and Melinda Gates Foundation

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22278720

RESUMO

To evaluate SARS-CoV-2 variants we isolated SARS-CoV-2 temporally during the pandemic starting with first appearance of virus in the Western hemisphere near Seattle, WA, USA, and isolated each known major variant class, revealing the dynamics of emergence and complete take-over of all new cases by current Omicron variants. We assessed virus neutralization in a first-ever full comparison across variants and evaluated a novel monoclonal antibody (Mab). We found that convalescence greater than 5-months provides little-to-no protection against SARS-CoV-2 variants, vaccination enhances immunity against variants with the exception of Omicron BA.1, and paired testing of vaccine sera against ancestral virus compared to Omicron BA.1 shows that 3-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a 2-dose regimen. We also reveal a novel Mab that effectively neutralizes Omicron BA.1 and BA.2 variants over clinically-approved Mabs. Our observations underscore the need for continued vaccination efforts, with innovation for vaccine and Mab improvement, for protection against variants of SARS-CoV-2. SummaryWe isolated SARS-CoV-2 temporally starting with emergence of virus in the Western hemisphere. Neutralization analyses across all variant lineages show that vaccine-boost regimen provides protection against Omicron BA.1. We reveal a Mab that protects against Omicron BA.1 and BA.2 variants.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-486561

RESUMO

The SARS-CoV-2 spike protein is the target of neutralizing antibodies and the immunogen used in all currently approved vaccines. The global spread of the virus has resulted in emergence of lineages which are of concern for the effectiveness of immunotherapies and vaccines based on the early Wuhan isolate. Here we describe two SARS-CoV-2 isolates with large deletions in the N-terminal domain (NTD) of the spike. Cryo-EM structural analysis showed that the deletions result in complete reshaping of the antigenic surface of the NTD supersite. The remodeling of the NTD affects binding of all tested NTD-specific antibodies in and outside of the NTD supersite for both spike variants. A unique escape mechanism with high antigenic impact observed in the {Delta}N135 variant was based on the loss of the Cys15-Cys136 disulfide due to the P9L-mediated shift of the signal peptide cleavage site and deletion of residues 136-144. Although the observed large loop and disulfide deletions are rare, similar modifications became independently established in several other lineages, highlighting the possibility of a general escape mechanism via the NTD supersite. The observed plasticity of the NTD foreshadows its broad potential for immune escape with the continued spread of SARS-CoV-2.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22268981

RESUMO

BackgroundMutations in the receptor binding domain of the SARS-CoV-2 Spike protein are associated with increased transmission or substantial reductions in vaccine efficacy, including in the recently described Omicron variant. The changing frequencies of these mutations combined with their differing susceptibility to available therapies have posed significant problems for clinicians and public health professionals. ObjectiveTo develop an assay capable of rapidly and accurately identifying variants including Omicron in clinical specimens to enable case tracking and/or selection of appropriate clinical treatment. Study DesignUsing three duplex RT-ddPCR reactions targeting four amino acids, we tested 419 positive clinical specimens from February to December 2021 during a period of rapidly shifting variant prevalences and compared genotyping results to genome sequences for each sample, determining the sensitivity and specificity of the assay for each variant. ResultsMutation determinations for 99.7% of detected samples agree with NGS data for those samples, and are accurate despite wide variation in RNA concentration and potential confounding factors like transport medium, presence of additional respiratory viruses, and additional mutations in primer and probe sequences. The assay accurately identified the first 15 Omicron variants in our laboratory including the first Omicron in Washington State and discriminated against an S-gene dropout Delta specimen. ConclusionWe describe an accurate, precise, and specific RT-ddPCR assay for variant detection that remains robust despite being designed prior to the emergence of Delta and Omicron variants. The assay can quickly identify mutations in current and past SARS-CoV-2 variants, and can be adapted to future mutations.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-471707

RESUMO

The SARS-CoV-2 Delta variant is currently responsible for most infections worldwide, including among fully vaccinated individuals. Although these latter infections are associated with milder COVID-19 disease relative to unvaccinated subjects, the specificity and durability of antibody responses elicited by Delta breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum binding and neutralizing antibody responses that are markedly more potent, durable and resilient to spike mutations observed in variants of concern than those observed in subjects who were infected only or received only two doses of COVID-19 vaccine. However, wee show that Delta breakthrough cases, subjects who were vaccinated after SARS-CoV-2 infection and individuals vaccinated three times (without infection) have serum neutralizing activity of comparable magnitude and breadth indicate that multiple types of exposure or increased number of exposures to SARS-CoV-2 antigen(s) enhance spike-specific antibody responses. Neutralization of the genetically divergent SARS-CoV, however, was moderate with all four cohorts examined, except after four exposures to the SARS-CoV-2 spike, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268211

RESUMO

Monoclonal antibodies (mAbs) are the treatment of choice for high-risk ambulatory persons with mild to moderate COVID-19. We studied viral culture dynamics post-treatment in a subset of participants receiving the mAb bamlanivimab in the ACTIV-2 trial. Viral load by qPCR and viral culture were performed from anterior nasal swabs collected on study days 0 (day of treatment), 1, 2, 3, and 7. Treatment with mAb resulted in rapid clearance of culturable virus in participants without treatment-emergent resistance. One day after treatment, 0 of 28 (0%) participants receiving mAb and 16 of 39 (41%) receiving placebo still had culturable virus (p <0.0001); nasal viral loads were only modestly lower in the mAb-treated group at days 2 and 3. Recrudescence of culturable virus was detected in three participants with emerging mAb resistance and viral load rebound. The rapid reduction in shedding of viable SARS-CoV-2 after mAb treatment highlights the potential role of mAbs in preventing disease transmission.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262754

RESUMO

ImportanceSARS-CoV-2 viral trajectory has not been well-characterized in documented incident infections. These data will inform SARS-CoV-2 natural history, transmission dynamics, prevention practices, and therapeutic development. ObjectiveTo prospectively characterize early SARS-CoV-2 viral shedding in persons with incident infection. DesignProspective cohort study. SettingSecondary data analysis from a multicenter study in the U.S. ParticipantsThe samples derived from a randomized controlled trial of 829 community-based asymptomatic participants recently exposed (<96 hours) to persons with SARS-CoV-2. Participants collected daily mid-turbinate swabs for SARS-CoV-2 detection by polymerase-chain-reaction and symptom diaries for 14-days. Persons with negative swab for SARS-CoV-2 at baseline who developed infection during the study were included in the analysis. ExposureLaboratory-confirmed SARS-CoV-2 infection. Main outcomes and measuresThe observed SARS-CoV-2 viral shedding characteristics were summarized and shedding trajectories were examined using a piece-wise linear mixed-effects modeling. Whole viral genome sequencing was performed on samples with cycle threshold (Ct)<34. ResultsNinety-seven persons (57% women, median age 37-years) developed incident infections during 14-days of follow-up. Two-hundred fifteen sequenced samples were assigned to 15 lineages that belonged to the G614 variant. Forty-two (43%), 18(19%), and 31(32%) participants had viral shedding for 1 day, 2-6 days, and [≥]7 days, with median peak viral load Ct of 38.5, 36.7, and 18.3, respectively. Six (6%) participants had 1-6 days of observed viral shedding with censored duration. The peak average viral load was observed on day 3 of viral shedding. The average Ct value was lower, indicating higher viral load, in persons reporting COVID-19 symptoms than asymptomatic. Using the statistical model, the median time from shedding onset to peak viral load was 1.4 days followed by a median of 9.7 days before clearance. Conclusions and RelevanceIncident SARS-CoV-2 G614 infection resulted in a rapid viral load peak followed by slower decay and positive correlation between peak viral load and shedding duration; duration of shedding was heterogeneous. This longitudinal evaluation of the SARS-CoV-2 G614 variant with frequent molecular testing may serve as a reference for comparing emergent viral lineages to inform clinical trial designs and public health strategies to contain the spread of the virus. KEY POINTSO_ST_ABSQuestionC_ST_ABSWhat are the early SARS-CoV-2 G614 viral shedding characteristics in persons with incident infection? FindingsIn this prospective cohort of 97 community-based participants who collected daily mid-turbinate swabs for SARS-CoV-2 detection after recent exposure to SARS-CoV-2, viral trajectory was characterized by a rapid peak followed by slower decay. Peak viral load correlated positively with symptoms. The duration of shedding was heterogeneous. MeaningA detailed description of the SARS-CoV-2 G614 viral shedding trajectory serves as baseline for comparison to new viral variants of concern and inform models for the planning of clinical trials and transmission dynamics to end this pandemic.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20222398

RESUMO

ObjectiveTo evaluate the effectiveness of SARS-CoV-2 testing on shortening the duration of quarantines for COVID-19 and to identify the most effective choices of testing schedules. DesignWe performed extensive simulations to evaluate the performance of quarantine strategies when one or more SARS-CoV-2 tests were administered during the quarantine. Simulations were based on statistical models for the transmissibility and viral loads of SARS-CoV-2 infections and the sensitivities of available testing methods. Sensitivity analyses were performed to evaluate the impact of perturbations in model assumptions on the outcomes of optimal strategies. ResultsWe found that SARS-CoV-2 testing can effectively reduce the length of a quarantine without compromising safety. A single RT-PCR test performed before the end of quarantine can reduce quarantine duration to 10 days. Two tests can reduce the duration to 8 days, and three highly sensitive RT-PCR tests can justify a 6-day quarantine. More strategic testing schedules and longer quarantines are needed if tests are administered with less sensitive RT-PCR tests or antigen tests. Shorter quarantines can be utilized for applications that tolerate a residual post-quarantine transmission risk comparable to a 10-day quarantine. ConclusionsTesting could substantially reduce the length of isolation, reducing the physical and mental stress caused by lengthy quarantines. With increasing capacity and lowered costs of SARS-CoV-2 tests, test-assisted quarantines could be safer and more cost-effective than 14-day quarantines and warrant more widespread use. RESEARCH IN CONTEXTO_ST_ABSWhat is already known on this topic?C_ST_ABSO_LIRecommendations for quarantining individuals who could have been infected with COVID-19 are based on limited evidence. C_LIO_LIDespite recent theoretical and case studies of test-assisted quarantines, there has been no substantive investigation to quantify the safety and efficacy of, nor an exhaustive search for, optimal test-assisted quarantine strategies. C_LI What this study addsO_LIOur simulations indicate that the 14-day quarantine approach is overly conservative and can be safely shortened if testing is performed. C_LIO_LIOur recommendations include testing schedules that could be immediately adopted and implemented as government and industry policies. C_LI Role of the Funding SourceA major technology company asked that we perform simulations to understand the optimal strategy for managing personnel quarantining before forming cohorts of individuals who would work closely together. The funding entity did not influence the scope or output of the study but requested that we include antigen testing as a component of the quarantining process. Patrick Yu and Peter Matos are employees of Corporate Medical Advisors, and International S.O.S employs Julie McCashin. Other funding sources are research grants and did not influence the investigation.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20204230

RESUMO

The rapid spread of SARS-CoV-2 has gravely impacted societies around the world. Outbreaks in different parts of the globe are shaped by repeated introductions of new lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State to characterize how the spread of SARS-CoV-2 in Washington State (USA) was shaped by differences in timing of mitigation strategies across counties, as well as by repeated introductions of viral lineages into the state. Additionally, we show that the increase in frequency of a potentially more transmissible viral variant (614G) over time can potentially be explained by regional mobility differences and multiple introductions of 614G, but not the other variant (614D) into the state. At an individual level, we see evidence of higher viral loads in patients infected with the 614G variant. However, using clinical records data, we do not find any evidence that the 614G variant impacts clinical severity or patient outcomes. Overall, this suggests that at least to date, the behavior of individuals has been more important in shaping the course of the pandemic than changes in the virus. One Sentence SummaryLocal outbreak dynamics of SARS-CoV-2 in Washington State (USA) were driven by regionally different mitigation measures and repeated introductions of unique viral variants with different viral loads.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20201228

RESUMO

BackgroundThe COVID-19 epidemic of 2019-20 is due to the novel coronavirus SARS-CoV-2. Following first case description in December, 2019 this virus has infected over 10 million individuals and resulted in at least 500,000 deaths world-wide. The virus is undergoing rapid mutation, with two major clades of sequence variants emerging. This study sought to determine whether SARS-CoV-2 sequence variants are associated with differing outcomes among COVID-19 patients in a single medical system. MethodsWhole genome SARS-CoV-2 RNA sequence was obtained from isolates collected from patients registered in the University of Washington Medicine health system between March 1 and April 15, 2020. Demographic and baseline medical data along with outcomes of hospitalization and death were collected. Statistical and machine learning models were applied to determine if viral genetic variants were associated with specific outcomes of hospitalization or death. FindingsFull length SARS-CoV-2 sequence was obtained 190 subjects with clinical outcome data. 35 (18.4%) were hospitalized and 14 (7.4%) died from complications of infection. A total of 289 single nucleotide variants were identified. Clustering methods demonstrated two major viral clades, which could be readily distinguished by 12 polymorphisms in 5 genes. A trend toward higher rates of hospitalization of patients with Clade 2 was observed (p=0.06). Machine learning models utilizing patient demographics and co-morbidities achieved area-under-the-curve (AUC) values of 0.93 for predicting hospitalization. Addition of viral clade or sequence information did not significantly improve models for outcome prediction. ConclusionSARS-CoV-2 shows substantial sequence diversity in a community-based sample. Two dominant clades of virus are in circulation. Among patients sufficiently ill to warrant testing for virus, no significant difference in outcomes of hospitalization or death could be discerned between clades in this sample. Major risk factors for hospitalization and death for either major clade of virus include patient age and comorbid conditions. FundingSupported by NIH P30EY001730, the Mark J. Daily, MD Research Fund (RVG), the Alida and Christopher Latham Research Fund (RVG, AYL, CSL), NIH K23EY029246 (AYL), US Food and Drug Administration (QYL)

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20125856

RESUMO

Peculiar among human RNA viruses, coronaviruses have large genomes containing accessory genes that are not required for replication. Numerous mutations within the SARS-CoV-2 genome have been described but few deletions in the accessory genes of SARS-CoV-2 have been reported. Here, we report two large deletions in ORF7a, both of which produce new open reading frames (ORFs) through the fusion of the N-terminus of ORF7a and a downstream ORF.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20082362

RESUMO

BackgroundCoronavirus disease-19 (COVID19), the novel respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is associated with severe morbidity and mortality. The rollout of diagnostic testing in the United States was slow, leading to numerous cases that were not tested for SARS-CoV-2 in February and March 2020, necessitating the use of serological testing to determine past infections. MethodsWe evaluated the Abbott SARS-CoV-2 IgG test for detection of anti-SARS-CoV-2 IgG antibodies by testing 3 distinct patient populations. ResultsWe tested 1,020 serum specimens collected prior to SARS-CoV-2 circulation in the United States and found one false positive, indicating a specificity of 99.90%. We tested 125 patients who tested RT-PCR positive for SARS-CoV-2 for which 689 excess serum specimens were available and found sensitivity reached 100% at day 17 after symptom onset and day 13 after PCR positivity. Alternative index value thresholds for positivity resulted in 100% sensitivity and 100% specificity in this cohort. We tested 4,856 individuals from Boise, Idaho collected over one week in April 2020 as part of the Crush the Curve initiative and detected 87 positives for a positivity rate of 1.79%. ConclusionsThese data demonstrate excellent analytical performance of the Abbott SARS-CoV-2 IgG test as well as the limited circulation of the virus in the western United States. We expect the availability of high-quality serological testing will be a key tool in the fight against SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...